资源类型

期刊论文 326

年份

2023 27

2022 19

2021 20

2020 14

2019 10

2018 7

2017 19

2016 10

2015 10

2014 13

2013 23

2012 12

2011 14

2010 22

2009 12

2008 29

2007 38

2006 7

2005 5

2004 3

展开 ︾

关键词

温度 3

温度控制 3

高温气冷堆 3

低温SOFC 2

大气温度 2

技术路线 2

模糊控制 2

温度分布 2

(美国) 核管理委员会 1

10kV高压电力电缆 1

Au/Ti双功能催化剂 1

CCD 1

CCD影像 1

Cu(In 1

D1 turnover / photoinhibition / photoprotection / photosynthesis / tomato / xanthophyll cycle 1

Ga)Se2 1

H2有效利用率 1

ISO标准火灾实验系统 1

LED灯具;加速老化测试;中位寿命;滑动平均误差 1

展开 ︾

检索范围:

排序: 展示方式:

Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1418-2

摘要:

• Mechanochemical treatment reduced the calcination temperature for biochar synthesis.

关键词: Biochar     Mechanochemical treatment     Graphitization     Calcination temperature     Organic pollutant    

Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity

Qing YE, Donghui LI, Jun ZHAO, Jiansheng ZHAO, Tianfang KANG, Shuiyuan CHENG

《环境科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 497-504 doi: 10.1007/s11783-011-0256-z

摘要: Au-supported 13X-type zeolite (Au/13X) was synthesized using a common deposition–precipitation (DP) method with a solution of sodium carbonate as a precipitate agent. Further testing was conducted to test for catalytic oxidation of CO. A study was conducted on the effects of different preparation conditions (i.e., chloroauric acid concentration, solution temperature, pH of solution, and calcinations temperature) on Au/13X for CO oxidation. In respect to the catalytic activity, the relationship between different the preparation conditions and gold particles in 13X zeolite was analyzed using X-ray diffraction, TEM and XPS. The activity of Au/13X catalysts in CO oxidation was dependent on the chloroauric acid concentration. From XRD results, a higher chloroauric acid concentration induced larger gold nanoparticles, which resulted in lower catalytic activity. Results revealed that higher temperatures induced higher Au loading, homogeneous deposit, and smaller gold clusters on the support of 13X, resulting in higher CO activity. Furthermore, a pH of 5 or 6 generated greater amounts of Au loading and smaller Au particles on 13X than at a pH of 8 or 9. This may be a result of an effective exchange between and Au(OH) Cl on specific surface sites of zeolite under the pH’s 5 and 6. The sample calcined at 300°C showed the highest activity, which may be due to the sample’s calcined at 200°C inability to decompose completely to metallic gold while the sample calcined at 400°C had larger particles of gold deposited on the support. It can be concluded from this study that Au/13X prepared from a gold solution with an initial chloroauric acid solution concentration of 1.5 × 10 mol·L gold solution pH of 6, solution temperature of around 90°C, and a calcination temperature of 300°C provides optimum catalytic activity for CO oxidation.

关键词: 13X-type zeolite     CO oxidation     gold solution     pH     calcination temperature    

Preparation of ultrafine α-AlO using precipitation-azeotropic distillation method

XIAO Jin, QIN Qi, ZHOU Feng, CHEN Yanbin, WAN Ye

《机械工程前沿(英文)》 2008年 第3卷 第2期   页码 226-231 doi: 10.1007/s11465-008-0029-y

摘要: Ammonium aluminum carbonate hydroxide (AACH) was prepared by a precipitation-azeotropic distillation method, which uses aluminum sulfate as the Al source and ammonium carbonate as the precipitant. Then, AACH was calcined into ultrafine ?-AlO powder. The factors that influence the dispersion property of ultrafine ?-AlO powder are discussed in this paper, such as the methods of adding materials, surfactant, and drying methods. The changes of the structure and property of ultrafine alumina in the thermal treatment process are also studied. The morphological structure and properties of AACH are characterized by DTA/TGA, SEM, XRD, and ICP measurements. The results show that ultrafine ?-AlO powder with a uniform particle size and well-distributed property can be synthesized only after aluminum sulfate atomizes into ammonium carbonate, proper amount of PEG1000 is added as the dispersant, and the product is treated by azeotropic distillation. The phase transformation of alumina during the calcination process can be described as amorphous AlO → ?-AlO → ?-AlO → ?-AlO. The crystal grain size and density of ultrafine alumina powder increase with the increase of the calcination temperature. After AACH has been calcined at 1200°C for 2 h, the ultrafine ?-AlO with uniform particle size, spherical shape, and more than 99.97% purity is obtained and its powder is well dispersed.

关键词: calcination temperature     spherical     AACH     carbonate hydroxide     ammonium carbonate    

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA,Hariyati PURWANINGSIH,George Endri KUSUMA,Chenhao WANG,Shaoju SHIH,Yingsheng HUANG

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 179-187 doi: 10.1007/s11705-014-1431-0

摘要: Carbon monoxide is a poisonous and hazardous gas and sensitive sensor devices are needed to prevent humans from being poisoned by this gas. A CO gas sensor has been prepared from WO synthesized by a sol-gel method. The sensor chip was prepared by a spin-coating technique which deposited a thin film of WO on an alumina substrate. The chip samples were then calcined at 300, 400, 500 or 600 °C for 1 h. The sensitivities of the different sensor chips for CO gas were determined by comparing the changes in electrical resistance in the absence and presence of 50 ppm of CO gas at 200 °C. The WO calcined at 500 °C had the highest sensitivity. The sensitivity of this sensor was also measured at CO concentrations of 100 ppm and 200 ppm and at operating temperatures of 30 and 100 °C. Thermogravimetric analysis of the WO calcined at 500 °C indicated that this sample had the highest gas adsorption capacity. This preliminary research has shown that WO can serve as a CO gas sensor and that is should be further explored and developed.

关键词: WO3 nanomaterial     sol-gel     calcinations     CO gas sensor     sensitivity    

Pd-Fe/α-Al

Shengping WANG, Xin ZHANG, Yujun ZHAO, Yadong GE, Jing LV, Baowei WANG, Xinbin MA

《化学科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 259-269 doi: 10.1007/s11705-012-1212-6

摘要: Cordierite monoliths coated with Pd-Fe/α-Al O catalysts were prepared at various calcination temperatures and characterized by thermogravimetry, temperature-programmed reduction, transmission electron microscopy, diffuse reflectance infrared Fourier transformation spectroscopy and X-ray diffraction. The performance of the catalytic monoliths for the synthesis of dimethyl oxalate (DMO) through a CO coupling reaction was evaluated. Monolithic catalysts with calcination temperatures ranging from 473 K to 673 K exhibited excellent dispersion of Pd, good CO adsorption properties, and excellent performance for the coupling reaction. The optimized monolithic catalyst exhibited a much higher Pd efficiency (denoted as DMO (g)·Pd (g) ·h ) (733 h ) than that of the granular catalyst (60.2 h ), which can be attributed to its honeycomb structure and the large pore sizes in the α-Al O washcoat which was accompanied with an even distribution of the active component in the coating layer along the monoliths channels.

关键词: dimethyl oxalate     coupling     Pd     cordierite     monolith     calcination     structure    

A study on the catalytic performance of Pd/γ-Al

Ruizhi CHU, Xianyong WEI, Zhimin ZONG, Wenjia ZHAO

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 452-456 doi: 10.1007/s11705-010-0522-9

摘要: A series of Pd/γ-Al O hybrid catalysts were prepared by impregnation and subsequent calcination under microwave irradiation. The catalysts were used for direct synthesis of dimethylether (DME) from syngas. The results show that calcination under microwave irradiation improved both the activity and selectivity of the catalysts for DME synthesis. The optimum power of the microwave was determined to be 420 W. Under such optimum conditions, CO conversion, DME selectivity and time space yield of DME were 60.1%, 67.0%, and 21.5 mmol·mL ·h , respectively. Based on various characterizations such as nitrogen physisorption, X-ray diffraction, CO-temperature-programmed desorption, and Fourier transform infrared spectral analysis, the promotional effect of the microwave irradiation on the catalytic property was mainly attributed to both the higher dispersion of Pd and the significant increase in the adsorption on the CO-bridge of Pd. Microwave irradiation with very high power led to the increase in CO-bridge adsorption and thereby decreased the catalytic activity, whereas the coverage by metallic Pd of the active sites on acidic γ-Al O significantly occurred under microwave irradiation with very low power, resulting in a decrease in the selectivity to DME.

关键词: Pd/γ-Al2O3     direct synthesis     dimethyl ether     calcination under microwave irradiation    

Emerging challenges to structural integrity technology for high-temperature applications

TU Shantung

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 375-387 doi: 10.1007/s11465-007-0066-y

摘要: Structural integrity technology has been widely used with great success for the design, manufacture and failure prevention of modern constructions such as chemical and petrochemical plants, power generation and energy conversion systems, as well as space and oceanic exploration. The modern needs of structural integrity technology are largely attributed to the increase of service temperature of the structures that results in the efficiency improvement in energy conversion and chemical processing technologies. Besides the needs arising from large-scale high-temperature plants, the high tech developments, such as micro chemo-mechanical systems and high-power electronics, provide new challenges to structural integrity technology. The present paper summarizes the recent technical progresses in large process plants and the aviation industry, micro chemo-mechanical systems, fuel cells, high-temperature electronics, and packaging and coating technologies. The state-of-the-art of structural integrity technology for high temperature applications is reviewed. Suggestions are provided for the improvement of current design and assessment methods.

关键词: manufacture     aviation industry     conversion     petrochemical     temperature    

Effects of temperature on pyrolysis products of oil sludge

LIU Jianguo, SONG Wei, NIE Yongfeng

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 8-14 doi: 10.1007/s11783-008-0030-z

摘要: Temperature is the determining factor of pyrolysis, which is one of the alternative technologies for oil sludge treatment. The effects of final operating temperature ranging from 350 to 550°C on pyrolysis products of oil sludge were studied in an externally-heating fixed bed reactor. With an increase of temperature, the mass fraction of solid residues, liquids, and gases in the final product is 67.00%–56.00%, 25.60%–32.35%, and 7.40%–11.65%, and their corresponding heat values are 34.4–13.8 MJ/kg, 44.41–46.6 MJ/kg, and 23.94–48.23 MJ/Nm, respectively. The mass and energy tend to shift from solid to liquid and gas phase (especially to liquid phase) during the process, and the optimum temperature for oil sludge pyrolysis is 500°C. The liquid phase is mainly composed of alkane and alkene (C–C), and the gas phase is dominantly HC and H.

关键词: sludge treatment     corresponding     Temperature     liquid     process    

Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems

ZHANG Xiujuan, XU Yuanze, YI Xiaosu

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 276-285 doi: 10.1007/s11705-008-0057-5

摘要: The cure-induced phase separation processes of various thermoplastics(TP)-modified thermosetting systems which show upper critical solution temperature (UCST) or lower critical solution temperature (LCST) were studied with emphasis on the temperature dependency of the phase separation time and its potential application in the cure time-temperature processing window. We found that the phase separation time/temperature relationship follows the simple Arrhenius equation. The cure-induced phase separation activation energy (ps) generated from the linear fitting of the Arrhenius equation is irrelevant to the detection means of phase separation time. We also found that (ps) is insensitive to TP content, TP molecular weight and curing rate, but it changes with the cure reaction kinetics and the chemical environment of the systems. With the established phase separation time-temperature dependence relation, we can easily establish the whole cure time-temperature transformation (TTT) diagram with morphology information which is a useful map for the TP/TS composites processing industry.

关键词: separation time-temperature     temperature dependency     cure-induced     separation activation     temperature    

Elevated temperature creep model of parallel wire strands

《结构与土木工程前沿(英文)》   页码 1060-1071 doi: 10.1007/s11709-023-0981-y

摘要: Parallel wire strands (PWSs), which are widely used in prestressed steel structures, are typically in high-stress states. Under fire conditions, significant creep effects occur, reducing the prestress and influencing the mechanical behavior of PWSs. As there is no existing approach to analyze their creep behavior, this study experimentally investigated the elevated temperature creep model of PWSs. A charge-coupled camera system was incorporated to accurately obtain the deformation of the specimen during the elevated temperature creep test. It was concluded that the temperature level had a more significant effect on the creep strain than the stress level, and 450 °C was the key segment point where the creep rate varied significantly. By comparing the elevated temperature creep test results for PWSs and steel strands, it was found that the creep strain of PWSs was lower than that of steel strands at the same temperature and stress levels. The parameters in the general empirical formula, the Bailey–Norton model, and the composite time-hardening model were fitted based on the experimental results. By evaluating the accuracy and form of the models, the composite time-hardening model, which can simultaneously consider temperature, stress, and time, is recommended for use in the fire-resistance design of pre-tensioned structures with PWSs.

关键词: parallel wire strands     experimental study     elevated temperature creep model    

Field test on temperature field and thermal stress for prestressed concrete box-girder bridge

Baoguo CHEN, Rui DING, Junjie ZHENG, Shibiao ZHANG

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 158-164 doi: 10.1007/s11709-009-0002-9

摘要: A field test was conducted to investigate the distribution of temperature field and the variation of thermal stress for a prestressed concrete (PC) box-girder bridge. The change of hydration heat temperature consists of four periods: temperature rising period, constant temperature period, rapid temperature fall period and slow temperature fall period. The peak value of hydration heat temperature increases with the increasing casting temperature of concrete; the relation between them is approximately linear. According to field tests, the thermal stress incurred by hydration heat may induce temperature cracks on the PC box-girder. Furthermore, the nonlinear distribution of temperature gradient and the fluctuation of thermal stress induced by exposure to sunlight were also obtained based on continuous in-situ monitoring. Such results show that the prevailing Chinese Code (2004) is insufficient since it does not take into account the temperature gradient of the bottom slab. Finally, some preventive measures against temperature cracks were proposed based on related studies. The conclusions can provide valuable reference for the design and construction of PC box-girder bridges.

关键词: box-girder bridge     field test     hydration heat     temperature field     temperature gradient     thermal stress    

A review of low-temperature plasma-assisted machining: from mechanism to application

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0734-y

摘要: Materials with high hardness, strength or plasticity have been widely used in the fields of aviation, aerospace, and military, among others. However, the poor machinability of these materials leads to large cutting forces, high cutting temperatures, serious tool wear, and chip adhesion, which affect machining quality. Low-temperature plasma contains a variety of active particles and can effectively adjust material properties, including hardness, strength, ductility, and wettability, significantly improving material machinability. In this paper, we first discuss the mechanisms and applications of low-temperature plasma-assisted machining. After introducing the characteristics, classifications, and action mechanisms of the low-temperature plasma, we describe the effects of the low-temperature plasma on different machining processes of various difficult-to-cut materials. The low-temperature plasma can be classified as hot plasma and cold plasma according to the different equilibrium states. Hot plasma improves material machinability via the thermal softening effect induced by the high temperature, whereas the main mechanisms of the cold plasma can be summarized as chemical reactions to reduce material hardness, the hydrophilization effect to improve surface wettability, and the Rehbinder effect to promote fracture. In addition, hybrid machining methods combining the merits of the low-temperature plasma and other energy fields like ultrasonic vibration, liquid nitrogen, and minimum quantity lubrication are also described and analyzed. Finally, the promising development trends of low-temperature plasma-assisted machining are presented, which include more precise control of the heat-affected zone in hot plasma-assisted machining, cold plasma-assisted polishing of metal materials, and further investigations on the reaction mechanisms between the cold plasma and other materials.

关键词: low-temperature plasma     difficult-to-cut material     machinability     hydrophilization effect     Rehbinder effect    

Real-time tool condition monitoring method based on temperature measurement and artificial neural network

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0661-3

摘要: Tool failures in machining processes often cause severe damages of workpieces and lead to large quantities of loss, making tool condition monitoring an important, urgent issue. However, problems such as practicability still remain in actual machining. Here, a real-time tool condition monitoring method integrated in an in situ fiber optic temperature measuring apparatus is proposed. A thermal simulation is conducted to investigate how the fluctuating cutting heats affect the measuring temperatures, and an intermittent cutting experiment is carried out, verifying that the apparatus can capture the rapid but slight temperature undulations. Fourier transform is carried out. The spectrum features are then selected and input into the artificial neural network for classification, and a caution is given if the tool is worn. A learning rate adaption algorithm is introduced, greatly reducing the dependence on initial parameters, making training convenient and flexible. The accuracy stays 90% and higher in variable argument processes. Furthermore, an application program with a graphical user interface is constructed to present real-time results, confirming the practicality.

关键词: tool condition monitoring     cutting temperature     neural network     learning rate adaption    

Effects of pressure and temperature on fixed-site carrier membrane for CO 2 separation from natural gas

Meng WANG, Dongxiao YANG, Zhi WANG, Jixiao WANG, Shichang WANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 127-132 doi: 10.1007/s11705-009-0231-4

摘要: In this paper, the effect of testing temperature on the performance of fixed carrier membrane for CO separation were studied. The blend composite membranes were developed respectively with a blend of PEI-PVA (polyetheleneimine-polyvinyl alcohol) as separation layer and PS (polysulfone) ultrafiltration membranes as the substrates. The permselectivity of the membranes was measured with CO/CH mixed gas. The effect of testing temperature on membrane separation performance was investigated. The results showed that both the permeances of CO and CH decreased with the increase of temperature, and the permeances decreased more quickly under low pressure than those under high pressure. At the feed pressure of 0.11MPa, the CO/ CH selectivity of PEI-PVA/PS blend composite membrane reduced along with temperature increment. Under the feed pressure of 0.21MPa, as well as 1.11MPa, the selectivity decreased with the increase of temperature.

关键词: temperature increment     high pressure     permselectivity     separation performance     temperature    

Investigation on the performance and detoxification of modified low temperature coal tar pitch

Fengyan SUN, Yu LIU

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 315-321 doi: 10.1007/s11709-017-0386-x

摘要: In this paper, studies on the modification on the low temperature coal tar pitch extracted from coal tar residue in Inner Mongolia are conducted. First, the low temperature coal tar pitch in liquid state is solidified with a higher softening point by chemical crosslinking modification. The modified coal tar pitch can achieve the standard pavement performance requirements. Then, the effects of chemical crosslinking agent and physical modification additives on the mechanical performance and toxic properties of coal tar pitch are investigated. The detoxification mechanism is also studied, which further promote the applicability of modified low temperature coal tar pitch in the pavement constructions.

关键词: coal tar pitch     low temperature     modification     detoxification    

标题 作者 时间 类型 操作

Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal

期刊论文

Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity

Qing YE, Donghui LI, Jun ZHAO, Jiansheng ZHAO, Tianfang KANG, Shuiyuan CHENG

期刊论文

Preparation of ultrafine α-AlO using precipitation-azeotropic distillation method

XIAO Jin, QIN Qi, ZHOU Feng, CHEN Yanbin, WAN Ye

期刊论文

WO3 nanomaterials synthesized via a sol-gel method and calcination for use as a CO gas sensor

Diah SUSANTI,A.A. Gede Pradnyana DIPUTRA,Lucky TANANTA,Hariyati PURWANINGSIH,George Endri KUSUMA,Chenhao WANG,Shaoju SHIH,Yingsheng HUANG

期刊论文

Pd-Fe/α-Al

Shengping WANG, Xin ZHANG, Yujun ZHAO, Yadong GE, Jing LV, Baowei WANG, Xinbin MA

期刊论文

A study on the catalytic performance of Pd/γ-Al

Ruizhi CHU, Xianyong WEI, Zhimin ZONG, Wenjia ZHAO

期刊论文

Emerging challenges to structural integrity technology for high-temperature applications

TU Shantung

期刊论文

Effects of temperature on pyrolysis products of oil sludge

LIU Jianguo, SONG Wei, NIE Yongfeng

期刊论文

Phase separation time/temperature dependence of thermoplastics-modified thermosetting systems

ZHANG Xiujuan, XU Yuanze, YI Xiaosu

期刊论文

Elevated temperature creep model of parallel wire strands

期刊论文

Field test on temperature field and thermal stress for prestressed concrete box-girder bridge

Baoguo CHEN, Rui DING, Junjie ZHENG, Shibiao ZHANG

期刊论文

A review of low-temperature plasma-assisted machining: from mechanism to application

期刊论文

Real-time tool condition monitoring method based on temperature measurement and artificial neural network

期刊论文

Effects of pressure and temperature on fixed-site carrier membrane for CO 2 separation from natural gas

Meng WANG, Dongxiao YANG, Zhi WANG, Jixiao WANG, Shichang WANG,

期刊论文

Investigation on the performance and detoxification of modified low temperature coal tar pitch

Fengyan SUN, Yu LIU

期刊论文